47 research outputs found

    Training Priors Predict Text-To-Image Model Performance

    Full text link
    Text-to-image models can often generate some relations, i.e., "astronaut riding horse", but fail to generate other relations composed of the same basic parts, i.e., "horse riding astronaut". These failures are often taken as evidence that the models rely on training priors rather than constructing novel images compositionally. This paper tests this intuition directly on the stablediffusion 2.1 text-to-image model. By looking at the subject-verb-object (SVO) triads that form the backbone of these prompts (e.g., "astronaut", "ride", "horse"), we find that the more often an SVO triad appears in the training data, the better the model can generate an image aligned with that triad. Here, by aligned we mean that each of the terms appears in the generated image in the proper relation to each other. However, this increased frequency also diminishes how well the model can generate an image aligned with the flipped triad. For example, if "astronaut riding horse" appears frequently in the training data, the image for "horse riding astronaut" will tend to be poorly aligned. We also find that models often struggle to generate terms in atypical roles, e.g., if "horse" is more often the semantic patient (object), the model might struggle to visualize it as a semantic agent (subject). Our results thus show that current models are biased to generate images aligned with relations seen in training and provide important new data in the ongoing debate on whether these text-to-image models employ abstract compositional structure in a traditional sense, or rather, interpolate between relations explicitly seen in the training data

    Circuit Component Reuse Across Tasks in Transformer Language Models

    Full text link
    Recent work in mechanistic interpretability has shown that behaviors in language models can be successfully reverse-engineered through circuit analysis. A common criticism, however, is that each circuit is task-specific, and thus such analysis cannot contribute to understanding the models at a higher level. In this work, we present evidence that insights (both low-level findings about specific heads and higher-level findings about general algorithms) can indeed generalize across tasks. Specifically, we study the circuit discovered in Wang et al. (2022) for the Indirect Object Identification (IOI) task and 1.) show that it reproduces on a larger GPT2 model, and 2.) that it is mostly reused to solve a seemingly different task: Colored Objects (Ippolito & Callison-Burch, 2023). We provide evidence that the process underlying both tasks is functionally very similar, and contains about a 78% overlap in in-circuit attention heads. We further present a proof-of-concept intervention experiment, in which we adjust four attention heads in middle layers in order to 'repair' the Colored Objects circuit and make it behave like the IOI circuit. In doing so, we boost accuracy from 49.6% to 93.7% on the Colored Objects task and explain most sources of error. The intervention affects downstream attention heads in specific ways predicted by their interactions in the IOI circuit, indicating that this subcircuit behavior is invariant to the different task inputs. Overall, our results provide evidence that it may yet be possible to explain large language models' behavior in terms of a relatively small number of interpretable task-general algorithmic building blocks and computational components

    A Mechanism for Solving Relational Tasks in Transformer Language Models

    Full text link
    A primary criticism towards language models (LMs) is their inscrutability. This paper presents evidence that, despite their size and complexity, LMs sometimes exploit a simple computational mechanism to solve one-to-one relational tasks (e.g., capital_of(Poland)=Warsaw). We investigate a range of language model sizes (from 124M parameters to 176B parameters) in an in-context learning setting, and find that for a variety of tasks (involving capital cities, upper-casing, and past-tensing) a key part of the mechanism reduces to a simple linear update typically applied by the feedforward (FFN) networks. These updates also tend to promote the output of the relation in a content-independent way (e.g., encoding Poland:Warsaw::China:Beijing), revealing a predictable pattern that these models take in solving these tasks. We further show that this mechanism is specific to tasks that require retrieval from pretraining memory, rather than retrieval from local context. Our results contribute to a growing body of work on the mechanistic interpretability of LLMs, and offer reason to be optimistic that, despite the massive and non-linear nature of the models, the strategies they ultimately use to solve tasks can sometimes reduce to familiar and even intuitive algorithms

    Characterizing Mechanisms for Factual Recall in Language Models

    Full text link
    Language Models (LMs) often must integrate facts they memorized in pretraining with new information that appears in a given context. These two sources can disagree, causing competition within the model, and it is unclear how an LM will resolve the conflict. On a dataset that queries for knowledge of world capitals, we investigate both distributional and mechanistic determinants of LM behavior in such situations. Specifically, we measure the proportion of the time an LM will use a counterfactual prefix (e.g., "The capital of Poland is London") to overwrite what it learned in pretraining ("Warsaw"). On Pythia and GPT2, the training frequency of both the query country ("Poland") and the in-context city ("London") highly affect the models' likelihood of using the counterfactual. We then use head attribution to identify individual attention heads that either promote the memorized answer or the in-context answer in the logits. By scaling up or down the value vector of these heads, we can control the likelihood of using the in-context answer on new data. This method can increase the rate of generating the in-context answer to 88\% of the time simply by scaling a single head at runtime. Our work contributes to a body of evidence showing that we can often localize model behaviors to specific components and provides a proof of concept for how future methods might control model behavior dynamically at runtime

    Analyzing Modular Approaches for Visual Question Decomposition

    Full text link
    Modular neural networks without additional training have recently been shown to surpass end-to-end neural networks on challenging vision-language tasks. The latest such methods simultaneously introduce LLM-based code generation to build programs and a number of skill-specific, task-oriented modules to execute them. In this paper, we focus on ViperGPT and ask where its additional performance comes from and how much is due to the (state-of-art, end-to-end) BLIP-2 model it subsumes vs. additional symbolic components. To do so, we conduct a controlled study (comparing end-to-end, modular, and prompting-based methods across several VQA benchmarks). We find that ViperGPT's reported gains over BLIP-2 can be attributed to its selection of task-specific modules, and when we run ViperGPT using a more task-agnostic selection of modules, these gains go away. Additionally, ViperGPT retains much of its performance if we make prominent alterations to its selection of modules: e.g. removing or retaining only BLIP-2. Finally, we compare ViperGPT against a prompting-based decomposition strategy and find that, on some benchmarks, modular approaches significantly benefit by representing subtasks with natural language, instead of code.Comment: Published at EMNLP 2023 (Main Conference). Source code: https://github.com/brown-palm/visual-question-decompositio

    NeuroSurgeon: A Toolkit for Subnetwork Analysis

    Full text link
    Despite recent advances in the field of explainability, much remains unknown about the algorithms that neural networks learn to represent. Recent work has attempted to understand trained models by decomposing them into functional circuits (Csord\'as et al., 2020; Lepori et al., 2023). To advance this research, we developed NeuroSurgeon, a python library that can be used to discover and manipulate subnetworks within models in the Huggingface Transformers library (Wolf et al., 2019). NeuroSurgeon is freely available at https://github.com/mlepori1/NeuroSurgeon
    corecore